Interface ColoringAlgo
-
public interface ColoringAlgo
An algorithm that assign a color to each vertex in a graph while avoiding identical color for any pair of adjacent vertices.Given a graph \(G=(V,E)\) a valid coloring is a function \(C:v \rightarrow c\) for any vertex \(v\) in \(V\) where each edge \((u,v)\) in \(E\) satisfy \(C(u) \neq C(v)\). The objective is to minimize the total number of different colors. The problem is NP-hard, but various heuristics exists which give decent results for general graphs and optimal results for special cases.
Each color is represented as an integer in range \([0, \textit{colorsNum})\).
Use
newInstance()
to get a default implementation of this interface. A builder obtained viabuilder()
may support different options to obtain different implementations.Graph<String, Integer> g = Graph.newUndirected(); g.addVertex("Alice"); g.addVertex("Bob"); g.addVertex("Charlie"); g.addVertex("David"); g.addEdge("Alice", "Bob"); g.addEdge("Bob", "Charlie"); g.addEdge("Charlie", "Alice"); g.addEdge("Charlie", "David"); Coloring coloringAlg = Coloring.newInstance(); VertexPartition<String, Integer> colors = coloringAlg.computeColoring(g); System.out.println("A valid coloring with " + colors.numberOfBlocks() + " colors was found"); for (String u : g.vertices()) { System.out.println("The color of vertex " + u + " is " + colors.vertexBlock(u)); for (EdgeIter<String, Integer> eit = g.outEdges(u).iterator(); eit.hasNext();) { eit.next(); String v = eit.target(); assert colors.vertexBlock(u) != colors.vertexBlock(v); } }
- Author:
- Barak Ugav
- See Also:
- Wikipedia
-
-
Nested Class Summary
Nested Classes Modifier and Type Interface Description static interface
ColoringAlgo.Builder
A builder forColoringAlgo
objects.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Modifier and Type Method Description static ColoringAlgo.Builder
builder()
Create a new coloring algorithm builder.<V,E>
VertexPartition<V,E>computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, resulting in a valid coloring.static <V,E>
booleanisColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.static ColoringAlgo
newInstance()
Create a new coloring algorithm object.
-
-
-
Method Detail
-
computeColoring
<V,E> VertexPartition<V,E> computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, resulting in a valid coloring.If
g
isIntGraph
, the returned object isIVertexPartition
.- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graph- Returns:
- a valid coloring with (hopefully) small number of different colors
- Throws:
IllegalArgumentException
- ifg
is directed
-
isColoring
static <V,E> boolean isColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.A valid coloring is first of all a valid
VertexPartition
, but also for each edge \((u,v)\) in the graph the color of \(u\) is different than the color of \(v\).- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graphmapping
- a mapping from the vertices ofg
to colors in range \([0, \textit{colorsNum})\)- Returns:
true
ifmapping
is a valid coloring ofg
,false
otherwise
-
newInstance
static ColoringAlgo newInstance()
Create a new coloring algorithm object.This is the recommended way to instantiate a new
ColoringAlgo
object. TheColoringAlgo.Builder
might support different options to obtain different implementations.- Returns:
- a default implementation of
ColoringAlgo
-
builder
static ColoringAlgo.Builder builder()
Create a new coloring algorithm builder.Use
newInstance()
for a default implementation.- Returns:
- a new builder that can build
ColoringAlgo
objects
-
-