Interface ColoringAlgo
-
public interface ColoringAlgo
An algorithm that assign a color to each vertex in a graph while avoiding identical color for any pair of adjacent vertices.Given a graph G=(V,E) a valid coloring is a function C:v→c for any vertex v in V where each edge (u,v) in E satisfy C(u)≠C(v). The objective is to minimize the total number of different colors. The problem is NP-hard, but various heuristics exists which give decent results for general graphs and optimal results for special cases.
Each color is represented as an integer in range [0,colorsNum).
Use
newInstance()
to get a default implementation of this interface. A builder obtained vianewBuilder()
may support different options to obtain different implementations.Graph<String, Integer> g = Graph.newUndirected(); g.addVertex("Alice"); g.addVertex("Bob"); g.addVertex("Charlie"); g.addVertex("David"); g.addEdge("Alice", "Bob"); g.addEdge("Bob", "Charlie"); g.addEdge("Charlie", "Alice"); g.addEdge("Charlie", "David"); Coloring coloringAlg = Coloring.newInstance(); VertexPartition<String, Integer> colors = coloringAlg.computeColoring(g); System.out.println("A valid coloring with " + colors.numberOfBlocks() + " colors was found"); for (String u : g.vertices()) { System.out.println("The color of vertex " + u + " is " + colors.vertexBlock(u)); for (EdgeIter<String, Integer> eit = g.outEdges(u).iterator(); eit.hasNext();) { eit.next(); String v = eit.target(); assert colors.vertexBlock(u) != colors.vertexBlock(v); } }
- Author:
- Barak Ugav
- See Also:
- Wikipedia
-
-
Nested Class Summary
Nested Classes Modifier and Type Interface Description static interface
ColoringAlgo.Builder
A builder forColoringAlgo
objects.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Modifier and Type Method Description <V,E>
VertexPartition<V,E>computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, resulting in a valid coloring.static <V,E>
booleanisColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.static ColoringAlgo.Builder
newBuilder()
Create a new coloring algorithm builder.static ColoringAlgo
newInstance()
Create a new coloring algorithm object.
-
-
-
Method Detail
-
computeColoring
<V,E> VertexPartition<V,E> computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, resulting in a valid coloring.If
g
isIntGraph
, the returned object isIVertexPartition
.- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graph- Returns:
- a valid coloring with (hopefully) small number of different colors
- Throws:
IllegalArgumentException
- ifg
is directed
-
isColoring
static <V,E> boolean isColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.A valid coloring is first of all a valid
VertexPartition
, but also for each edge (u,v) in the graph the color of u is different than the color of v.- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graphmapping
- a mapping from the vertices ofg
to colors in range [0,colorsNum)- Returns:
true
ifmapping
is a valid coloring ofg
,false
otherwise
-
newInstance
static ColoringAlgo newInstance()
Create a new coloring algorithm object.This is the recommended way to instantiate a new
ColoringAlgo
object. TheColoringAlgo.Builder
might support different options to obtain different implementations.- Returns:
- a default implementation of
ColoringAlgo
-
newBuilder
static ColoringAlgo.Builder newBuilder()
Create a new coloring algorithm builder.Use
newInstance()
for a default implementation.- Returns:
- a new builder that can build
ColoringAlgo
objects
-
-