Interface ColoringAlgo
-
- All Known Implementing Classes:
ColoringAlgoAbstract
,ColoringDSatur
,ColoringGreedy
,ColoringRecursiveLargestFirst
public interface ColoringAlgo
An algorithm that assign a color to each vertex in a graph such that the endpoints of each edge have different colors.Given a graph \(G=(V,E)\) a valid coloring is a function \(C:v \rightarrow c\) for any vertex \(v\) in \(V\) where each edge \((u,v)\) in \(E\) satisfy \(C(u) \neq C(v)\). The objective is to minimize the total number of different colors. The problem is NP-hard, but various heuristics exists which give decent results for general graphs and optimal results for special cases.
There is not special result object for this interface, rather the result is a
VertexPartition
. Each 'block' in the partition is a color, and the vertices in the block are the vertices that have the same color. The number of blocks is the number of different colors used in the coloring.Use
newInstance()
to get a default implementation of this interface.Graph<String, Integer> g = Graph.newUndirected(); g.addVertex("Alice"); g.addVertex("Bob"); g.addVertex("Charlie"); g.addVertex("David"); g.addEdge("Alice", "Bob"); g.addEdge("Bob", "Charlie"); g.addEdge("Charlie", "Alice"); g.addEdge("Charlie", "David"); Coloring coloringAlg = Coloring.newInstance(); VertexPartition<String, Integer> colors = coloringAlg.computeColoring(g); System.out.println("A valid coloring with " + colors.numberOfBlocks() + " colors was found"); for (String u : g.vertices()) { System.out.println("The color of vertex " + u + " is " + colors.vertexBlock(u)); for (EdgeIter<String, Integer> eit = g.outEdges(u).iterator(); eit.hasNext();) { eit.next(); String v = eit.target(); assert colors.vertexBlock(u) != colors.vertexBlock(v); } }
- Author:
- Barak Ugav
- See Also:
- Wikipedia
-
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Modifier and Type Method Description <V,E>
VertexPartition<V,E>computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, while minimizing the number of different colors.static <V,E>
booleanisColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.static ColoringAlgo
newInstance()
Create a new coloring algorithm object.
-
-
-
Method Detail
-
computeColoring
<V,E> VertexPartition<V,E> computeColoring(Graph<V,E> g)
Assign a color to each vertex of the given graph, while minimizing the number of different colors.If
g
isIntGraph
, the returned object isIVertexPartition
.- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graph- Returns:
- a valid coloring with (hopefully) small number of different colors
- Throws:
IllegalArgumentException
- ifg
is directed
-
isColoring
static <V,E> boolean isColoring(Graph<V,E> g, ToIntFunction<V> mapping)
Check whether a given mapping is a valid coloring of a graph.A valid coloring is first of all a valid
VertexPartition
, but also for each edge \((u,v)\) in the graph the color of \(u\) is different than the color of \(v\).- Type Parameters:
V
- the vertices typeE
- the edges type- Parameters:
g
- a graphmapping
- a mapping from the vertices ofg
to colors in range \([0, \textit{colorsNum})\)- Returns:
true
ifmapping
is a valid coloring ofg
,false
otherwise
-
newInstance
static ColoringAlgo newInstance()
Create a new coloring algorithm object.This is the recommended way to instantiate a new
ColoringAlgo
object.- Returns:
- a default implementation of
ColoringAlgo
-
-