Package com.jgalgo.alg.connect
Class MinimumEdgeCutAllStAbstract
java.lang.Object
com.jgalgo.alg.connect.MinimumEdgeCutAllStAbstract
- All Implemented Interfaces:
MinimumEdgeCutAllSt
- Direct Known Subclasses:
MinimumEdgeCutAllStPicardQueyranne
Abstract class for computing all minimum edge cuts between two terminal nodes.
The class implements the interface by solving the problem on the index graph and then maps the results back to the original graph. The implementation for index graphs is abstract and left to the subclasses.
- Author:
- Barak Ugav
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescription<V,E> Iterator<VertexBiPartition<V, E>> minimumCutsIter(Graph<V, E> g, WeightFunction<E> w, V source, V sink) Iterate over all the minimum edge-cuts in a graph between two terminal vertices.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.jgalgo.alg.connect.MinimumEdgeCutAllSt
allMinimumCuts
-
Constructor Details
-
MinimumEdgeCutAllStAbstract
public MinimumEdgeCutAllStAbstract()Default constructor.
-
-
Method Details
-
minimumCutsIter
public <V,E> Iterator<VertexBiPartition<V,E>> minimumCutsIter(Graph<V, E> g, WeightFunction<E> w, V source, V sink) Description copied from interface:MinimumEdgeCutAllStIterate over all the minimum edge-cuts in a graph between two terminal vertices.Given a graph \(G=(V,E)\), an edge-cut is a partition of \(V\) into twos sets \(C, \bar{C} = V \setminus C\). The return value of this function is an iterator over all the partitions to these two sets with minimum weight.
If
gis anIntGraph, the returned iterator will iterate overIVertexBiPartitionobjects. In that case, its better to pass aIWeightFunctionaswto avoid boxing/unboxing.- Specified by:
minimumCutsIterin interfaceMinimumEdgeCutAllSt- Type Parameters:
V- the vertices typeE- the edges type- Parameters:
g- a graphw- an edge weight functionsource- the source vertexsink- the sink vertex- Returns:
- an iterator over all the minimum edge-cuts
-